
Am. J. Hum. Genet. 69:1255–1265, 2001

1255
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Trisomy is the most common genetic abnormality in humans and is the leading cause of mental retardation. Although
molecular studies that use a large number of highly polymorphic markers have been undertaken to understand the
recombination patterns for chromosome abnormalities, there is a lack of multilocus approaches to incorporating
crossover interference in the analysis of human trisomy data. In the present article, we develop two statistical
methods that simultaneously use all genetic information in trisomy data. The first approach relies on a general
relationship between multilocus trisomy probabilities and multilocus ordered-tetrad probabilities. Under the as-
sumption that no more than one chiasma exists in each marker interval, we describe how to use the expectation-
maximization algorithm to examine the probability distribution of the recombination events underlying meioses
that lead to trisomy. One limitation of the first approach is that the amount of computation increases exponentially
with the number of markers. The second approach models the crossover process as a x2 model. We describe how
to use hidden Markov models to evaluate multilocus trisomy probabilities. Our methods are applicable when both
parents are available or when only the nondisjoining parent is available. For both methods, genetic distances among
a set of markers can be estimated and the pattern of overall chiasma distribution can be inspected for differences
in recombination between meioses exhibiting trisomy and normal meioses. We illustrate the proposed approaches
through their application to a set of trisomy 21 data.

Introduction

Trisomy is the most commonly identified chromosome
abnormality in humans, occurring in 0.3% of live births,
4% of stillbirths, and as many as 25% of spontaneous
abortions (Hassold and Jacobs 1984). To produce a tri-
somic offspring, the parent in whom nondisjunction oc-
curs transmits a disomic gamete, whereas the other par-
ent transmits the usual monosomic gamete. Recent
studies of trisomy 21 have shown that both altered levels
of recombination and altered exchange patterns are as-
sociated with maternal nondisjunction (Lamb et al.
1996, 1997). Although these studies have revealed that
the recombination patterns among meioses that lead to
nondisjunction may be different from those among nor-
mal meioses, existing statistical treatments of trisomy
data are not entirely satisfactory, as will be reviewed in
the next paragraph. The objective of the present article
is to develop general statistical approaches that over-
come the limitations of the existing methods for the anal-
ysis of trisomy data.
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Genetic mapping methods for nondisjoined chro-
mosomes have been discussed by Ott et al. (1976), Sha-
har and Morton (1986), Chakravarti and Slaugenhaupt
(1987), Chakravarti et al. (1989), Feingold et al. (2000),
Yu and Feingold (2001), and other researchers. In most
studies, genetic map construction is divided into two
steps. In the first step, the more-proximal marker is
treated as a pseudocentromere, and pairwise LOD
scores are calculated for each pair of markers, through
the observed patterns of nonreduction (heterozygous ge-
notype) and reduction (homozygous genotype) of mark-
ers along the nondisjoined chromosome pair. In the sec-
ond step, these pairwise LOD scores are compiled to
derive an estimated genetic map. The limitations of such
methods are as follows: (1) Instead of using multilocus
information jointly, they only use markers sequentially;
thus, many informative cases are discarded in the pair-
wise analysis, because not all the markers are typed or
are informative. (2) The procedures in compiling pair-
wise LOD scores are ad hoc, and the direction of bias
is difficult to evaluate. (3) Crossover interference can
be accounted for only at the stage where pairwise dis-
tances are combined, although crossover interference
has been observed in humans (e.g., Hulten 1974; Bro-
man and Weber 2000). (4) Joint recombination patterns
across a set of intervals cannot be recovered from such
analysis. Chakravarti et al. (1989) proposed two ap-
proaches for multilocus analysis. One was to assume at
most three chiasmata across the region under study,
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with no more than one chiasma in a given marker in-
terval. The other was to treat the proximal marker as
a pseudocentromere, relative to the distal marker. The
first approach is not applicable to chromosomes likely
to have more than three chiasmata or for studies in-
volving large marker intervals, whereas the second ap-
proach implicitly assumes the absence of chiasma in-
terference. Feingold et al. (2000) derived multipoint
likelihoods for trisomy data, under the assumption of
no crossover interference, and their method allows for
partial information and the absence of one parent for
individuals with trisomy. However, the genetic-distance
estimates from their approach may be biased, because
crossover interference does appear to occur during nor-
mal human meiosis (Broman and Weber 2000). In a
recent article, in which they assumed that the total num-
ber of crossovers on a chromosome in a meiosis is ob-
servable, Yu and Feingold (2001) discussed issues re-
lated to the estimation of tetrad crossover–frequency
distributions from genetic recombination data, includ-
ing nondisjunction data. Given the limitations of the
existing methods, in the context of analyzing unipar-
ental disomy (UPD) data, Zhao et al. (2000) first es-
tablished a general relationship between multilocus
UPD probabilities and multilocus ordered-tetrad prob-
abilities and then showed how to use the expectation-
maximization (EM) algorithm (Dempster et al. 1977)
to estimate joint recombination probabilities under the
assumption that there is at most one chiasma within
each marker interval. Because the amount of compu-
tation required by this approach increases exponentially
with the number of genetic markers, Zhao et al. (2001)
described how to use a hidden Markov model (HMM)
to evaluate multilocus UPD probabilities when the chi-
asma process is assumed to follow the x2 model (Zhao
et al. 1995). In the present article, we extend these two
approaches from our previous work on UPD data to
trisomy data. Both approaches can simultaneously con-
sider all genetic markers for all individuals and consis-
tently incorporate crossover interference in the analysis.

In the Methods section, we describe the two ap-
proaches for trisomy data in detail. In the Results sec-
tion, we summarize the performance of the HMM ap-
proach, under a variety of simulation scenarios. We then
apply our method to the analysis of a trisomy 21 data
set. Finally, in the Discussion section, we conclude with
comments on our methods and related issues.

Methods

Notation for Multilocus Ordered-Tetrad Data

In the present article, markers are denoted by script
letters. For example, we use to denote a geneticA

marker. Alleles are denoted by italic letters. For example,
A and a denote two alleles of marker . We use [E, F;A
H, W] to denote the observed marker configuration for
an ordered tetrad, where E and F are attached to one
centromere and H and W are attached to the other cen-
tromere. For example, [AB, Ab; aB, ab] represents an
ordered tetrad with two strands carrying AB and Ab
attached to one centromere and with two strands car-
rying aB and ab attached to the other centromere. The
centromere is denoted by CEN. For patterns between a
pair of markers, we use P to denote a parental ditype
in which all four strands retain the parental type, T to
denote a tetratype in which two of the four strands show
recombination, and N to denote a nonparental ditype
in which all four strands are recombinants.

For a genetic marker that segregates with two al-A
leles A and a, there are six distinguishable patterns for
ordered tetrads: (1) [A, A; a, a], (2) [A, a; A, a], (3) [A,
a; a, A], (4) [a, A; A, a], (5) [a, A; a, A], and (6) [a, a;
A, A]. Patterns 1 and 6 are called the “first division
segregation” (FDS) pattern, and patterns 2–5 are called
the “second division segregation” (SDS) pattern (Grif-
fiths et al. 1996). For ordered tetrads, we distinguish

states for n markers in the order ofn�12 # 3
. Each of these states isn�1CEN, A , A , … , A 2 # 31 2 n

represented by , where or 1 cor-J p (j , j , … , j ) j p 0n 1 2 n 1

responds to FDS or SDS, respectively, at A1, and j pr

, 1, or 2 corresponds to P, T, or N, respectively, between0
and , for . We denote the probabilityA A r p 2, … , nr�1 r

of ordered-tetrad state by .J pn Jn

Notation for Multilocus Data for the Two
Chromosomes from the Nondisjoining Parent

Consider n markers, with each marker— ,A r pr

—being heterozygous with alleles and in(1, … , n) A ar r

the nondisjoining parent (NDJP). At any given locus, the
two chromosomes inherited from the NDJP are de-
scribed as “reduced to homozygosity” (denoted by R)
if they are identical by descent, or as “nonreduced” (de-
noted by N) if they are not identical by descent. When
the phases in the parent are unknown, we distinguish 2n

distinct states for joint genotypes on the two nondisjoin-
ed chromosomes. Each of these states is denoted by

, where or 1 corresponds to theI p (i , i , … , i ) i p 0n 1 2 n k

kth marker being R or N, respectively. The probability
for each pattern In is denoted by Note that through-u .In

out this article, we use “J” to denote an ordered-tetrad
state and “I” to denote a state for the two chromosomes
from the NDJP. Their corresponding probabilities are
denoted by pJ and uI, respectively. Meiotic nondisjunc-
tion events are classified as meiosis I (MI) nondisjunc-
tion, if the two copies of the same chromosome are ho-
mologous, and as meiosis II (MII) nondisjunction, if the
two copies are sister chromatids (Orr-Weaver 1996).
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Elsewhere, we have derived general relationships be-
tween uI and the pJ for both MI and MII nondisjunction
events, and we have described how to use these rela-
tionships to estimate, on the basis of UPD data, joint
ordered-tetrad–state probabilities at the four-strand
stage during meiosis (Zhao et al. 2000).

Notation for Multilocus Trisomy Data

Because of the complexity of trisomy data, we may
not always identify whether a marker is R or N in an
individual with trisomy, even if the NDJP is heterozy-
gous at this marker. Feingold et al. (2000) gave a com-
prehensive discussion on the format of trisomy data. In
the next paragraph, we briefly summarize the notation
discussed by Feingold et al. (2000), and detailed expla-
nations can be found in their article.

For an individual with trisomy, either one or two par-
ents are available for study. When two parents are avail-
able, we distinguish six mating types between the NDJP
and the correctly disjoining parent (CDJP): (1) ab # cd,
(2) ab # bc, (3) ab # cc, (4) ab # bb, (5) ab # ab,
and (6) aa # anything. For the first four mating types,
we can always unambiguously determine whether the
two chromosomes inherited from the NDJP are R or N.
The fifth mating type is an intercross. It can produce an
R, when the trisomy individual’s genotype is aaa or bbb,
or an X, when the trisomy individual’s genotype is aab
or abb. The marker status of X indicates that the marker
is partially informative. Although we do not have une-
quivocal information about whether the true state is N
or R, some information is added because the probability
of observing an X depends on what the true state is. For
the sixth mating type, the NDJP is homozygous, and the
marker is completely uninformative, which we denote
by U. Untyped markers can also be considered unin-
formative. When only one parent is available, we dis-
tinguish four mating types between the NDJP and the
CDJP: (1) ab # missing, (2) aa # missing, (3) missing
# aa, and (4) missing # ab. As in the case when two
parents are available, the genotype at a marker in an
individual with trisomy can be coded in four ways: N,
R, U, and X. When the above notation is used, each
individual with trisomy can be represented as a character
string, with the use of R, N, X, and U, for example,
“…NRNUNX….”

Maximum-Likelihood Estimates of Multilocus Ordered-
Tetrad Probabilities from Trisomy Data if There Is at
Most One Chiasma within Each Marker Interval

Assume that in our trisomy data there are a total of
S cases, each typed at some of the n genetic markers.
Elsewhere, we have established general relationships be-
tween multilocus UPD probabilities and multilocus or-
dered-tetrad probabilities for both MI and MII errors

(Zhao et al. 2000). Assuming at most one chiasma be-
tween adjacent markers, we described how to use the
EM algorithm to estimate multilocus ordered-tetrad
probabilities from UPD data (Zhao et al. 2000). Using
this method, we can estimate the genetic distances be-
tween consecutive markers and can obtain the overall
chiasma distribution. Because of the complexity of tri-
somy data, we have to modify the EM algorithm de-
scribed elsewhere (Zhao et al. 2000) to analyze trisomy
data. The details on the E step and the M step are de-
scribed in Appendix A. In general, for either MI or MII
nondisjunction, we start the EM algorithm with initial
estimates of multilocus probabilities . The E step com-0pJ

putes the expected number of each possible ordered-
tetrad pattern J, conditional on the observed trisomy
data and the initial values . The M step maximizes0pJ

the likelihood of this “expected” data set and thus gen-
erates updated estimates of pJ. These new estimates are
fed back into the E step, and the algorithm iterates until
convergence. From the maximum-likelihood estimates of
ordered-tetrad probabilities pJ, we can derive the distri-
bution of the number of chiasmata on the chromosome
and the joint distribution of chiasmata among the
marker intervals. It is also straightforward to estimate
the genetic distance between each pair of consecutive
markers and to estimate the total genetic distance be-
tween the centromere and the most distant marker. The
detailed procedure for these estimates has been reported
elsewhere (Zhao et al. 2000).

The HMM Approach to Trisomy Data

Although no specific models are assumed in the anal-
ysis of trisomy data in the above approach, the amount
of computation increases exponentially with the number
of markers. For human UPD data, an HMM, in which
the crossover process is modeled by the x2 model, has
been developed (Zhao et al 2001). The x2 model for
crossovers has a long history (Bailey 1961). Foss et al.
(1993) represented the model in the form of Cx(Co)m as
follows: assume that the crossover intermediates (C
events) are randomly distributed along the four-strand
bundle and that every intermediate resolves either as a
crossover (denoted by “Cx”) or as a noncrossover (de-
noted by “Co”). When an intermediate resolves as a Cx,
the next m intermediates must resolve as a Co, and after
m Cos, the next intermediate must resolve as a Cx. The
process is made stationary by allowing the leftmost
crossover intermediate an equal chance to be one of
Cx(Co)m. Note that the Poisson (no interference) model
corresponds to . Among the many crossover pro-m p 0
cess models that have been proposed in the literature,
the x2 model has been found to provide a good fit to
data from many organisms (Zhao et al. 1995). Because
there are no partially informative markers in UPD data,
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Table 1

Simulation Results for MI and MII Nondisjunctions When Both
Parents Are Available

Ordera Probabilitiesb

Sample
Size dM1(sdM1)

c dM2(sdM2)
d

0 m p .2, c p .1 400 10 (.1) 10 (.1)
200 10 (.3) 10 (.2)

0 m p .4, c p .1 400 10 (.3) 10 (.2)
200 11 (.5) 10 (.4)

0 m p .2, c p .2 400 11 (.2) 10 (.2)
200 11 (.3) 10 (.3)

0 m p .4, c p .2 400 10 (.4) 10 (.2)
200 10 (.6) 11 (.4)

1 m p .2, c p .1 400 10 (.2) 10 (.2)
200 11 (.3) 10 (.2)

1 m p .4, c p .1 400 10 (.2) 10 (.2)
200 10 (.3) 10 (.3)

1 m p .2, c p .2 400 9 (.2) 10 (.1)
200 11 (.4) 10 (.2)

1 m p .4, c p .2 400 11 (.2) 10 (.2)
200 10 (.3) 10 (.3)

2 m p .2, c p .1 400 10 (.2) 10 (.2)
200 11 (.2) 11 (.2)

2 m p .4, c p .1 400 10 (.2) 10 (.1)
200 10 (.3) 10 (.2)

2 m p .2, c p .2 400 10 (.1) 10 (.2)
200 10 (.2) 9 (.2)

2 m p .4, c p .2 400 10 (.2) 10 (.2)
200 10 (.3) 10 (.3)

a Order as indicated by the x2 model.
b m is the probability of being a completely uninformative marker,

and c is the probability of being an intercross-mating type.
c dM1 indicates the average of the estimates of genetic distance of

the fourth marker interval for MI nondisjunction, and sdM1 indicates
the associated standard deviation of the genetic distance estimates.

d dM2 is the average of the estimates of genetic distance of the fourth
interval for MII nondisjunction, and sdM2 is the associated standard
deviation of the genetic distance estimates.

we need to extend the HMM approach to accommodate
human trisomy data, as described in the next paragraph.

As discussed by Rabiner (1989), an HMM has the
following five components: (1) the set of hidden states

and ; (2) the set of dis-S p {S , … S … , S } 1 � i � L1 i L

tinct observation symbols andV p {v , … v , … , v }1 k M

; (3) the state transition probability distri-1 � k � M
bution , where ,A p {a } a p P(q p SFq p S ) 1 �ij ij r�1 j r i

, and and where qr denotes the hidden state ati j � L
time r; (4) the observation symbol probability distri-
bution in state Sj , whereB p {b (v )} b (v ) p P(O pj j rk k

, , and and where de-v Fq p S ) 1 ≤ j ≤ L 1 ≤ k ≤ M Or j rk

notes the observation symbol at time r; and (5) the initial
state distribution , where Thep p {p } p p P(q p S ).i i 1 i

exact forms of these five components of UPD data were
discussed by Zhao et al. (2001). In Appendix B, we
discuss the forms of these five components of trisomy
data. Having defined the five elements of the HMM, we
can use the forward algorithm to calculate the proba-
bility of any trisomy genotype and can obtain the max-
imum-likelihood estimates of the parameters of inter-
est—that is, the genetic distances among the markers
and the interference parameter m. If we let inm p 0
the x2 model, then our HMM approach is the same as
the no-interference model discussed by Feingold et al.
(2000).

Results

Simulation Results

In this section, we summarize the simulation results
under the HMM approach for trisomy data with eight
equally spaced markers. The genetic distance between
each pair of consecutive markers is 10 cM. We varied
the sample size ( ), the interference pa-S p 200 or 400
rameter ( ), and the proportion of missingm p 0, 1, or 2
data ( ) in our simulations. In addition,m p 0.2 or 0.4
to examine the effect of partially informative markers,
we varied the proportion of intercross-mating type c
( ), when both parents are available. Wec p 0.1 or 0.2
assumed that the parameter c is the same across all the
markers. For each parameter combination, we generated
100 simulated data sets and estimated the genetic dis-
tances among the markers. The results are summarized
in table 1. We list only the estimates for the fourth in-
terval, for both MI and MII nondisjunction. It can be
seen that when both parents are available, the maxi-
mum-likelihood estimates of genetic distances are almost
unbiased.

If only the NDJP is available, instead of varying the
proportion of intercross-mating types c in our simula-
tions, we varied the parameter q (the probability that
the CDJP contributes an allele that is different from ei-
ther of the alleles of the NDJP), to consider the effect

of partially informative markers. We assumed that the
parameter q is the same across all the markers. The re-
sults are summarized in table 2. We list only the estimates
of the fourth interval of both MI and MII nondisjunc-
tions. Even when the CDJP is missing, the maximum-
likelihood estimates of the genetic distances still per-
formed quite well.

Application of Simulation Results to Trisomy 21 Data

Trisomy 21 is the most common viable chromosomal
abnormality in humans and is responsible for 195% of
instances of Down syndrome. The incidence is ∼1 per
600 live births (Sherman et al. 1994). Recent molecular
studies indicate that most trisomy 21 is maternally de-
rived and is typically a result of nondisjunction at MI
(Lamb et al. 1996). In this section, we apply our two
approaches to a maternal MI trisomy data set that con-
sists of 434 individuals with trisomy. Ten intervals span-
ning the full length of the chromosome were included
in our analysis. To maximize the amount of linkage in-
formation for a given interval, we grouped several mark-
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Table 2

Simulation Results for MI and MII Nondisjunction When Only the
NDJP Is Available

Order Probabilities
Sample

Size dM1(sdM1) dM2(sdM2)

0 m p .2, q p .8 400 10 (.2) 10 (.2)
200 11 (.3) 11 (.3)

0 m p .4, q p .8 400 11 (.3) 10 (.2)
200 10 (.5) 10 (.3)

0 m p .2, q p .6 400 10 (.3) 10 (.2)
200 10 (.4) 10 (.3)

0 m p .4, q p .6 400 10 (.3) 10 (.2)
200 11 (.5) 10 (.4)

1 m p .2, q p .8 400 11 (.2) 10 (.2)
200 10 (.2) 11 (.3)

1 m p .4, q p .8 400 10 (.2) 10 (.2)
200 10 (.3) 10 (.3)

1 m p .2, q p .6 400 11 (.2) 10 (.2)
200 10 (.3) 9 (.3)

1 m p .4, q p .6 400 11 (.3) 9 (.3)
200 10 (.3) 10 (.4)

2 m p .2, q p .8 400 10 (.1) 10 (.2)
200 10 (.2) 10 (.2)

2 m p .4, q p .8 400 10 (.2) 10 (.2)
200 11 (.3) 10 (.3)

2 m p .2, q p .6 400 10 (.2) 10 (.2)
200 9 (.3) 9 (.3)

2 m p .4, q p .6 400 9 (.3) 9 (.2)
200 10 (.3) 10 (.3)

NOTE.—Data are as described in footnotes to table 1.

Table 3

Genetic Distance Estimates in the MI Trisomy 21
Data Set

Interval Cxa EM Soton Mapb

d1 2.5 (.5) 1.8 (.9) 5.4
d2 3.5 (.7) 3.1 (1.2) 23.3
d3 1.4 (.4) 1.9 (.9) 1.9
d4 2.5 (.5) 2.2 (.9) 8.9
d5 1.6 (.4) 1.3 (.9) .8
d6 9.4 (.7) 7.3 (1.6) 7.2
d7 2.0 (.2) 1.8 (.9) .9
d8 1.7 (.0) 1.7 (1.0) .4
d9 8.9 (.2) 7.6 (1.8) 9.7
d10 7.4 (.2) 7.5 (2.2) 1.4

Total 40.9 36.3 59.8

a No interference model.
b Represents genetic distances in the normal female

map.

ers into a region, defined as a set of markers known to
be tightly linked in normal individuals and among which
no recombination was observed in the trisomic data set.
The markers and marker groups used in our analysis
are D21s13/D21s16/D21s192, D21s214/D21s232,
D21s210, D21s213, D21s223/D21s224/IFNAR,
D21s17/D21s167, ETS2/D21s156, HMG14, D21s212/
D21s113, and D21s1575/D21s1446. We describe our
results based on the two approaches separately.

Maximum-likelihood estimates of multilocus ordered-
tetrad probabilities assuming at most one chiasma within
each marker interval.—The results are summarized in
table 3. The total genetic length was estimated as 36.3
cM for the MI trisomy data set, which is shorter than
that of the normal female map. Several estimates of the
total length of the normal female map are available: the
Marshfield map estimates the total genetic length at 64.6
cM, the analysis based on normal female meiotic events
that uses genotype data from CEPH puts the estimate
at 72.1 cM, and the total genetic length of the most
recent normal female map, maintained at the Web site
of the Genetic Location Database, is 59.8 cM.

From the maximum-likelihood estimates of ordered
probabilities we can also study the distribution ofp ,Jn

chiasma number and the exchange patterns for a given
number of chiasmata. For these ten intervals, the esti-
mated proportions of tetrads with 0, 1, 2, and 3 chi-
asmata are 41.7%, 46.2%, 9.9%, and 2.0%, respec-

tively, for this MI trisomy data set. The majority of the
tetrads (87.9%) had zero or one chiasma. For a given
number of chiasmata (1 or 2), we summarize the dis-
tribution of the chiasmata for MI trisomy in table 4.
The exchange patterns conditional on three chiasmata
are not listed, because they are much less reliable, being
derived from only a small proportion of the total cases.
When there was a single chiasma on the whole chro-
mosome, it most likely occurred in the last five intervals.
For the two-chiasmata case, the modes of the first chi-
asma was in the first two intervals, and the majority of
the second chiasma occurred in the fourth, sixth, and
ninth intervals.

The HMM approach.—The estimated genetic dis-
tances among the markers and the associated standard
errors under different x2 models are shown in table 5.
For MI trisomy, the total estimated genetic length across
these 10 markers ranges from 38.4 cM to 44.3 cM for
different m values. The maximized log-likelihoods from
different x2 models were very similar, with the no-inter-
ference model having the largest log-likelihood
(�456.5). The log-likelihood of CxCo model is �459.4,
which is very close to that of the no-interference model.

Under the assumption of no crossover interference,
Feingold et al. (2000) analyzed the same MI trisomy
data set. However, our analyses differed from those of
Feingold et al. (2000) in the number of marker groups
analyzed: we analyzed 11 marker groups for the present
report, whereas Feingold et al. (2000) reported analysis
of 14 marker groups. This was because it is not feasible
for our program to analyze 110 markers, using the EM
approach, because of the large computer memory re-
quired for the EM approach; therefore, we were forced
to combine several marker groups. Using 14 marker
groups, Feingold et al. (2000) estimated the total genetic
length to be 45.1 cM. Note that we converted their es-
timated y values to genetic distances and summed over
the intervals to arrive at the value of 45.1 cM. If we had
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Table 4

The Exchange Patterns for Chiasmata of MI Trisomy Data When the Total Number of Chiasmata on the Tetrads is k p 0, 1, or 2

k (DISTRIBUTION)

FREQUENCY, CONDITIONAL ON k (EM METHOD), IN INTERVAL

1 2 3 4 5 6 7 8 9 10

0 (.417) … … … … … … … … … …
1 (.462) .00 .01 .08 .03 .05 .25 .04 .05 .20 .28
2 (.099):

First .36 .47 .00 .08 .00 .00 .00 .00 .08 .00
Second .00 .00 .00 .23 .00 .30 .08 .00 .31 .08

Map distances (cM) 1.8 3.1 1.9 2.2 1.3 7.3 1.8 1.7 7.6 7.5

FREQUENCY, CONDITIONAL ON k (HMM METHOD WITH m p 0), IN INTERVAL

1 2 3 4 5 6 7 8 9 10

0 (.452) … … … … … … … … … …
1 (.377) .06 .08 .03 .06 .04 .23 .05 .04 .22 .18
2 (.124):

First .12 .18 .06 .10 .06 .29 .05 .04 .09 .00
Second .00 .02 .00 .02 .01 .15 .04 .03 .34 .39

Map distances (cM) 2.5 3.5 1.4 2.5 1.6 9.4 2.0 1.7 8.9 7.4

NOTE.—. For each k, this table summarizes the marginal distribution of the jth chiasma, where j p 1, … ,k.

fixed the order in our HMM approach at andm p 0
had used the same marker groups as those used by Fein-
gold et al. (2000), we would have arrived at the same
results as those obtained by Feingold et al. (2000) with
the HMM approach.

For the HMM approach, we can also study the dis-
tribution of chiasma number and the exchange patterns
for a given number of chiasmata through examining the
estimates of ordered-tetrad probabilities. When we fix
the HMM model at for this MI trisomy data set,m p 0
the estimated proportions of tetrads with 0, 1, 2, and 3
chiasmata are 45.2%, 37.7%, 12.4%, and 0.3%, re-
spectively. The majority (82.9%) of the tetrads had zero
or one chiasma, which is similar to the estimates based
on the EM approach. The distribution of the chiasmata
for MI trisomy, given the chiasmata number, is sum-
marized in table 4. Because the proportion of tetrads
that have more than two chiasmata is as small as 0.3%,
we did not list the related results in table 4.

Table 3 lists the comparisons between the results ob-
tained with the EM approach and the HMM approach
for the MI trisomy data. For the HMM approach, we
chose the Cx model to perform the comparison. From
table 3 we can see that our proposed two approaches
generate consistent results for most intervals.

Discussion

In the present article, we describe two general multilocus
approaches that make use of all the marker information
in the observed trisomy data and that can consistently
incorporate crossover interference. The first approach is
based on the relationships we have established between

multilocus half-tetrad probabilities and multilocus or-
dered-tetrad probabilities (Zhao et al. 2000). When
many markers are available in genetic studies, we may
assume that there is at most one chiasma in each marker
interval on the tetrads. For this particular model, we
have described how to use the EM algorithm to estimate
multilocus ordered-tetrad probabilities from the ob-
served trisomy data. Our approach can analyze data that
contain many untyped and uninformative markers and
partially informative markers. From the maximum-like-
lihood estimates of ordered-tetrad probabilities, we can
study the probability distribution of the number of chi-
asmata and the exchange patterns along the chromo-
some. Our EM-based method can be used when both
parents are available or when only the CDJP is available.
The second approach is based on the x2 model for the
crossover process. One advantage of this approach is
that the amount of computation increases linearly with
the number of markers, allowing us to include many
genetic markers in the same analysis. Our method in-
cludes the method developed by Feingold et al. (2000)
as a special case. This is because the x2 model when

corresponds to the no-interference model dis-m p 0
cussed by Feingold et al. (2000). We have implemented
our methods in computer programs, which can be down-
loaded from our Web site.

The limitation of the previous approaches for trisomy
analysis was demonstrated by Feingold et al. (2000),
who performed an extensive simulation study to com-
pare their multipoint NDJMap method with other
methods, such as TETRAD and DSLINK. Throughout
their simulations, NDJMap generated completely con-
sistent and unbiased results for both small and large
data sets. On the other hand, both DSLINK and TET-
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Table 5

Distances Between the Genetic Markers from the MI Trisomy 21 Data Set

INTERVAL

ESTIMATED GENETIC DISTANCES IN cM (STANDARD ERROR) UNDER x2 MODELS

0 1 2 3 4 5

d1 2.5 (.5) 2.3 (.1) 2.3 (.1) 2.3 (.1) 2.3 (.1) 2.3 (.1)
d2 3.5 (.7) 3.6 (.1) 3.9 (.1) 4.1 (.1) 4.4 (.1) 4.6 (.1)
d3 1.4 (.4) 1.7 (.1) 2.1 (.1) 2.4 (.1) 2.8 (.1) 3.1 (.1)
d4 2.5 (.5) 2.6 (.1) 2.9 (.1) 3.2 (.1) 3.5 (.1) 3.7 (.1)
d5 1.6 (.4) 1.6 (.1) 1.6 (.1) 1.6 (.1) 1.6 (.1) 1.6 (.1)
d6 9.4 (.7) 8.4 (.1) 8.6 (.1) 9.0 (.1) 9.3 (.1) 9.7 (.1)
d7 2.0 (.2) 1.7 (.1) 1.7 (.1) 1.7 (.1) 1.6 (.1) 1.6 (.1)
d8 1.7 (.0) 1.6 (.1) 1.6 (.1) 1.6 (.1) 1.6 (.1) 1.6 (.1)
d9 8.9 (.2) 7.9 (.2) 8.1 (.2) 8.3 (.2) 8.6 (.3) 8.9 (.3)
d10 7.4 (.1) 6.9 (.2) 7.0 (.2) 7.1 (.2) 7.2 (.3) 7.3 (.3)

Total 40.9 38.4 39.6 41.3 42.8 44.3
Log�L �456.5 �459.4 �465.8 �472.8 �479.8 �486.5

RAD showed occasional inconsistencies in estimates de-
rived from data sets of different sizes. Because our
HMM approach includes the NDJMap approach as a
special case, , we expect the HMM approach tom p 0
generate results as consistent as those of the NDJMap
method, whereas previous methods may fail. In addi-
tion, our HMM approach has the further advantage
that it can incorporate cross-interference in the analysis,
and our simulation results for both MI and MII cases
show that our method produces unbiased estimates of
genetic distance in the presence of crossover interfer-
ence. One major limitation of the EM approach is that
both computer-memory requirements and computation
time increase exponentially with the number of markers,
making the approach inapplicable to cases where many
genetic markers need to be jointly analyzed.

Recall that the EM approach assumes that each
marker interval has at most one chiasma, whereas the
HMM approach assumes that the crossover process fol-
lows the x2 model. When these two approaches were
applied to analyze a real MI trisomy data set, we found
that they gave similar estimates of genetic distance.
However, the two approaches yielded somewhat differ-
ent patterns of the exchange distributions conditional
on a given number of chiasmata on the four-strand bun-
dle. For example, conditional on having two chiasmata
in the region, the more-proximal exchange was inferred
by use of the EM approach to occur mostly in the first
two intervals, whereas, by use of the HMM approach,
the more-proximal exchange was inferred to be more
uniformly distributed across the first six intervals. Given
the small proportion of trisomies estimated to have two
chiasmata in the region, it may be difficult to establish
a statistically significant result in the comparison be-
tween the two approaches, and these discrepancies will
be addressed in our future studies. Because the EM ap-
proach imposes less-stringent assumptions on the cross-

over process, especially when the markers are close to
each other, discrepancies between the two approaches,
such as those just described, may point to some limi-
tation of the x2 model and may lead to modification or
developments of new models for the crossover process.

The HMM approach can be extended to the Poisson-
skip model (Lange et al. 1998), a generalization of the
x2 model. Although the x2 model has been found to be
a good fit for data from many organisms, it may not
accurately describe the crossover processes underlying
meiotic nondisjunction, such as the discrepancies ob-
served between the results under the HMM approach
and those under the EM approach. Model checking and
model comparison will be performed in our future
work, using the observed data to investigate the use-
fulness of the HMM discussed in the present article.

Throughout the present article, we have assumed that
no genotyping error is present in the observed data,
although genotyping errors do occur in real genetic
studies. In a study published elsewhere, we examined
the effects of genotyping errors and interference on es-
timation of genetic distances, using recombination data
from single spores (Goldstein et al. 1997). It was found
that genotyping errors inflate genetic distance estimates,
and we expect similar results for nondisjunction data,
especially for closely linked markers. However, the mag-
nitude of such effects and the ability of statistical meth-
ods to incorporate genotyping errors are beyond the
scope of the present article and will be addressed in our
future studies.

In general, the state of origin of trisomy is evaluated
by comparing chromosome 21 pericentromeric markers
of the parent who contributed the extra chromosome
with those of the trisomic offspring. If parental hetero-
zygosity was retained in the trisomic offspring, we con-
clude that an MI error is present, and if parental het-
erozygosity was reduced to homozygosity, we conclude
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an MII or mitotic error is present. Because highly poly-
morphic chromosome 21 pericentromeric markers are
not available to us, these determinations are based on
the most-proximal informative markers. This means
that some proportion of assignments may be in error
(Sherman et al. 1994). Moreover, in our real trisomy
data set, a large proportion of proximal markers are
untyped or uninformative, and this, too, may lead to
assignment error. Our experience with human UPD15

data analysis suggests that these assignment errors may
reduce our power to detect crossover interference.
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Appendix A

Below we describe the EM algorithm for the maximum-likelihood estimates of multilocus ordered-tetrad prob-
abilities from trisomy data, assuming at most one chiasma within each marker interval.

E Step

Denote the current estimates of ordered-tetrad probabilities by . Our data reconstruction is performed in twocpJn

steps: (1) we calculate the expected number of each possible trisomy state In, conditional on the observed dataCIn

and the current estimates ; and (2) we calculate the expected number of each possible ordered-tetrad statecp DJ Jn

from .J Cn In

Section A.—We calculate multilocus trisomy probabilities via the relationships established between UPDuIn

probabilities and ordered-tetrad probabilities in Zhao et al. (2000) as follows. For each individual from the observed
data, if there are no partially informative, no untyped, and no uninformative markers, the sample case corresponds
to a particular pattern in , where and . Therefore, the contribution of thisI p (i , i … , i ) i � {0, 1} 1 � k � nn 1 2, n k

sample case to pattern is 1, and its contribution to all other patterns is 0. If there are h untyped or uninformativeIn

markers (denoted by U) and f partially informative markers (denoted by X) for this sample case, where ,h � 0
, and , this case corresponds to different string patterns . Denote the positions of untypedh�ff � 0 1 � h � f � n 2 In

and uninformative markers by m1, m2,…, mh, and denote the positions of partially informative markers by z1, z2,…,
zf; the different patterns can be represented by , where ifh�f2 L p (l , l , … l ) k � {m , m , … , m } ∪n 1 2 n 1 2 h

, then can take value 0 or 1, and if , then takes a fixed value{z , z , … , z } l k � {m , m , … , m } ∪ {z , z , … , z } l1 2 f k 1 2 h 1 2 f k

. Note that for a , the contribution of symbol X to N is two times as great as that toj � {0, 1} k � {z , z , … , z }k 1 2 f

R at this marker. This is because , where a is a constant.P(X) p P(X/N)P(N) � P(X/R)P(R) p aP(N) � 0.5aP(R)
For each Ln, we use to denote the number of those k with and . Therefore, the con-g k � {z , z , … , z } l p 0L 1 2 f kn

tribution of this sample case to each of the different patterns can be calculated byh�f2

1 1g gL Ln n( ) u ( ) u ,�ZL l , l ,…, l , l , l ,…, l L2 2n m m m z z z n1 2 h 1 2 f

and the contribution of this sample case to all other patterns In besides these patterns is 0. If we go throughh�f2
the whole data set in this fashion, we can obtain the expected number for each possible pattern UPD In.CIn

Section B.—With the relationships between and established in our earlier study (Zhao et al. 2000), weu pI Jn n

calculate from the (obtained in Section A), as follows:D CJ In n

c cD p C [c(I , J )p c(I , J )p ] .� �ZJ I I n n J J n n Jn n n n n n

M Step

The updated estimates of multilocus ordered-tetrad probabilities arepJn

DJnew np p ,Jn S

where S is the sample size.
Repeat the E step and the M step until convergence.
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Appendix B

The Five Components of the HMM for Trisomy Data

Because we relate trisomy data to ordered-tetrad data (as in the analysis of UPD data), three of the five components
are identical to the UPD case. These three identical components are: S, the set of hidden states; A, the state transition
probability distribution; and p, the initial state distribution. For the general Cx(Co)m model, Zhao et al. (2001)
defined hidden states for each marker Ar. Each hidden state is represented by Si,l, whereN p 6(m � 1) i p

denotes one of the six patterns for an ordered-tetrad (these six patterns were defined earlier, in the subsection1, … , 6
Notation for Multilocus Ordered-Tetrad Data), and l denotes the number of Co events after the last Cx event
before marker Ar. Let , the elements in the transition matrix between the hidden states atp p m � 1 6p # 6p
consecutive markers given elsewhere (Zhao et al. 2001). The initial hidden state can only be one of the 2(m � 1)
states and , where . If we assume that the crossover process is stationary, these statesS S l p 0, … , m 2m � 21,l 6,l

have the same probability of being the initial state. Therefore, we discuss only the two components that are different
from UPD data: V, the set of distinct observation symbols; and Bj, the observation symbol probability distribution
in state Sj.

As discussed above, there are four possibilities at each marker for trisomy data; therefore, V p
. For the observation symbol probability distribution in state Si,l, it depends on which two strands{R, N, X, U}

are observed in the nondisjoined chromosome of an individual with trisomy. Because meiotic nondisjunction
events can be classified as either MI nondisjunction or MII nondisjunction, we consider MI and MII nondis-
junction, in turn, in our discussion.

If we use to denote an ordered tetrad, we define E as the first strand and H as the third strand.[E, F; H, W]
Under MI nondisjunction, without loss of generality, we assume that the first and third strands are observed in the
nondisjoined chromosomes of an individual with trisomy. We consider two cases separately: (1) both parents are
available or (2) only the NDJP is available.

MI Nondisjunction, Both Parents Available

We first note that the observation symbol distribution depends only on the first component in the hidden state
Si,l. Given a completely informative marker, according to Zhao et al. (2001), we have the following observation
symbol probabilities for the first four mating types defined in the Notation for Multilocus Trisomy Data section:

S S S S S S1,l 2,l 3,l 4,l 5,l 6,l

R 0 1 0 0 1 0 .
N 1 0 1 1 0 1

If the parental mating type is an intercross at the marker, we may observe only an X or an R for the trisomy
individual. When , the two strands from the NDJP are nonreduced, so the probability that we observei p 1, 3, 4, 6
an at this marker is 1. When , the two strands from the NDJP are reduced, so we have the same probabilityX i p 2, 5
of observing an X or an R at this marker. We have the following observation symbol probabilities:

S S S S S S1,l 2,l 3,l 4,l 5,l 6,l

R 0 0.5 0 0 0.5 0
.

N 0 0 0 0 0 0
X 1 0.5 1 1 0.5 1

When the marker is uninformative or untyped, it is easy to see that .P(UFS ) p 1i,l

MI Nondisjunction When Only the NDJP Is Available

If the NDJP is heterozygous at a marker, assume that the genotype of the NDJP at this marker is AGBG. Let
and denote the allele frequency of and in the population. Therefore, is thep p A B q p 1 � (p � p )A B G G G A BG G G G

probability that the CDJP contributes an allele that is different from either of the alleles in the NDJP. For i p
, the two strands from the NDJP are nonreduced. In this case, we observe an N if and only if the CDJP1, 3, 4, 6
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contributes an allele different from those in the NDJP. This occurs with probability . If the CDJP contributes anqG

allele that is the same as one of the two alleles in the NDJP, we observe a Z, and this occurs with probability
. For , the two strands from the NDJP are reduced. In this case, there are two possibilities that we1 � q i p 2, 5G

may observe an R: (1) the CDJP contributes an allele different from those of the NDJP, and this happens with
probability ; (2) the CDJP contributes an allele that is the same as the one contributed by the NDJP, and thisqG

happens with probability ( . On the other hand, we observe an X if and only if the CDJP contributes an1 � q )/2G

allele which is carried but not contributed by the NDJP. This happens with probability ( . In addition, the1 � q )/2G

chance that we observe an N is 0. From the above discussion, we obtain the following observation symbol probability
distribution:

S S S S S S1,l 2,l 3,l 4,l 5,l 6,l

1 1
R 0 (1 � q ) 0 0 (1 � q ) 0G G2 2 .
N q 0 q q 0 qG G G G

1 1
X (1 � q ) (1 � q ) (1 � q ) (1 � q ) (1 � q ) (1 � q )G G G G G G2 2

If the marker in the NDJP is either homozygous or untyped, .P(UFS ) p 1i,l

MII Nondisjunction, Both Parents Available

For MII nondisjunction events, the two chromosomes inherited from the NDJP are sister chromatids. We can
obtain the observation symbol probabilities as in the MI nondisjunction case. For a completely informative marker,
we have the following observation symbol probabilities for the first four mating types defined in the Notation for
Multilocus Trisomy Data section:

S S S S S S1,l 2,l 3,l 4,l 5,l 6,l

R 1 0 0 0 0 1 .
N 0 1 1 1 1 0

For a marker at which the parental mating type is an intercross, we have the following observation symbol
probabilities:

S S S S S S1,l 2,l 3,l 4,l 5,l 6,l

R 0.5 0 0 0 0 0.5
.

N 0 0 0 0 0 0
X 0.5 1 1 1 1 0.5

When the marker is uninformative or untyped, .P(UFS ) p 1i,l

MII Nondisjunction When Only the NDJP Is Available

If the NDJP is heterozygous at a marker, we have the following observation symbol probability distribution

S S S S S S1,l 2,l 3,l 4,l 5,l 6,l

1 1
R (1 � q ) 0 0 0 0 (1 � q )G G2 2 .
N 0 q q q q 0G G G G

1 1
X (1 � q ) 1 � q 1 � q 1 � q 1 � q (1 � q )G G G G G G2 2

If the marker in the NDJP is either homozygous or untyped, .P(UFS ) p 1i,l
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